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Abstract. Human behavior, despite its complexity, follows structured principles 

that, if understood, will result in more reliable and effective collaborative auto-

mation environments. Characterizing human behavior in collaborative automa-

tion systems based on understanding the underlying context allows for novel 

advances in robotic human behavior sensing, processing, and predicting. Here, 

virtual reality, through integration of HTC Vive Arena Pro Eye Bundle, Leap 

Motion, and Unity 3D game engine, is used for safe and secure data collection 

on humans’ movements and body language in human robot collaborative envi-

ronments. This paper proposes an unsupervised classification framework 

through integration of dynamic time warping and k-means clustering algorithm 

to enable robotics agents to understand humans’ intentions based on their body 

movements. Results display that the proposed framework is capable of identify-

ing underlying intentions with an average accuracy, recall, and precision of 

85%, 73%, and 75%, respectively.  

Keywords: Human Robot Interaction, Virtual Reality, Unsupervised Classifica-

tion. 

1 Introduction 

Human-robot interaction (HRI) is a diverse field of research with huge economic 

impact. The collaborative robots is estimated to reach over $1.43 billion by 2027, 

having a significant impact on the Gross Domestic Product (GDP) of various econo-

mies[1]. HRI is already used in manufacturing environments, space applications, res-

cue robotics, and more [2-4] Human–robot interaction is defined as “the process of 

conveying human intentions and interpreting task descriptions into a sequence of 

robot motions complying with robot capabilities and working requirements” [5]. In 

manufacturing, industrial robots, equipped with different sensors, can be adapted to 

do many different industrial tasks [6]. HRI in manufacturing faces challenges such as 

ensuring safety and efficiency. To address these challenges, it is critical for robots 

understand humans’ intentions and the underlying context [7]. 

As demonstrated in Fig. 1, HRI can be classified into the following three classes: 

First, Human–Robot Coexistence, which is defined as the capability of sharing the 
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workspace between humans and robots without requiring mutual contact or coordina-

tion of actions and intentions [8]. Second, Human–robot cooperation, in which hu-

mans and robots work on the same goal and occupy the same time and space, simul-

taneously. The cooperation requires advanced technologies and techniques for colli-

sion detection and collision avoidance [9]. Third, Human–robot collaboration, per-

forming complex tasks with direct human interactions, where explicit contact between 

human and robot exists [6]. 

 

 

Fig. 1. The three forms of human-robot interaction [7]. 

Humans and robots collaborating is on a common objective form a team with com-

plementary skills, in which an agreed-upon strategy is necessary for effective collabo-

ration amongst all parties . Also, humans and robots need to be aware of the intents of 

the other team members. Based on which, a robot can design its own behaviors that 

will ultimately result in the achievement of the shared objective through perceiving 

and understanding the surroundings as well as making decisions and plan ahead [10]. 

The goal of this study is to create a virtual platform that enables safe yet realistic 

context-aware human-robot collaboration. To this end, this study develops a Virtual 

Reality (VR) platform for safe data collection, while proposes an unsupervised classi-

fication framework through integration of dynamic time warping (DTW) and k-means 

algorithm for intent prediction. This enables robotics agents to predict and understand 

human intents from their physical cues. In the remainder of the paper, Section 2 re-

views the literature of the topic. Section 3 provides the methodology of the research. 

Results and discussion are provided in Section 4 and, Section 5 concludes the paper. 

2 Literature review 

The literature of human intention recognition (classification) is diverse and has caught 

the attention of researchers from both industry and academia [11]. Intention recogni-

tion is also known as activity recognition, plan recognition, goal recognition, behavior 

recognition. In this work, we define intention recognition as the process of determin-

ing what an observed agent intends to do in the immediate future [12]. Recognizing 

the goal of the observed agent is an important aspect in human-robot interaction, as 



3 

this understanding enables effective interaction and also proactive behavior modifica-

tion in order to prevent accidents or resolve issues that may arise. 

Human intention/activity recognition based on images or videos has received plen-

ty of attention recently in the field of computer vision. The occlusion problem, how-

ever, reduces the accuracy of visual-based recognitions [13]. Wearable devices, on the 

other hand, immediately sense human body movements, providing real-time infor-

mation on the body status. Additionally, a variety of low-cost wearable gadgets are 

available on the market and are frequently employed in intention recognition [14]. 

Among the studies that addressed the problem of human intention recognition, 

Stiefmeire et al. [15] utilized ultrasonic sensors for worker activity recognition using a 

Hidden Markov Model. In their following study, the authors proposed a string-

matching based classification approach using multiple sensors for recognizing worker 

activities in a manufacturing setting [16]. Koskimaki et al. classified five activities for 

industrial assembly lines using a wrist-worn Inertial Measurement Unit (IMU) sensor 

and a K-Nearest Neighbor model [17]. Using inputs from a smartwatch combined 

with an IMU sensor, Maekawa et al. [18] proposed an unsupervised approach for lead 

time estimation of manufacturing activities.  

Zhu et al. [19] addressed human intention recognition by designing a hidden Mar-

kov based recognition algorithm to classify hand gestures using an inertial sensor 

worn on finger of the subject. Zhu et al. tacked motion intention recognition using an 

inertial sensor and a deep convolution neural network (CNN) to extract discriminant 

features from temporal gait period [20]. Sun et al. used muscle electrical signals and 

joint angle signals as motion data and utilized K-Nearest Neighbor algorithm to iden-

tify four gait motion modes including walking naturally, climbing stairs, descending 

stairs, and crossing obstacles [21].  

Wen and Wang [22] proposed an intention recognition algorithm based on multi-

modal spatiotemporal feature fusion using the data collected by multimodal sensors. 

Masoud et al. [23] proposed a task recognition framework to identify undergoing 

tasks in pseudo real-time using a pair of data glove for grafting operations. This study 

offers a distinct contribution to the existing body of knowledge and provides a fresh 

and unique approach to the study of human-robot interaction by integrating the ad-

vantages of a virtual immersive platform and an unsupervised classification for con-

text aware HRI. 

3 Methodology 

As displayed in Fig. 2, our proposed framework for intention classification consists of 

two main phases: First, creating an immersive virtual platform, which is used for safe 

data collection and second, unsupervised classification using K-means and dynamic 

time warping. In data acquisition and processing phase, we develop an interactive 

physics-based model via Unity 3D game engine. The developed model is integrated 

with HTC-Vive room scale pro eye arena bundle and leap motion controller to create 

the immersive virtual platform for data collection. The data collected through this 

immersive platform (Unity) is then cleaned and processed using open source python 



4 

libraries. In the training and intention classification phase, the processed data is used 

to train our unsupervised intention classification model.  

 

Fig. 2. Our proposed intention classification framework. 

3.1 Immersive Virtual Reality Platform 

To build the immersive platform, HTC-Vive pro eye arena bundle is used to model 

the immersive environment while Leap Motion controller replaces the typical control-

lers to enable users interact with the virtual environment using their hands. Leap mo-

tion controller captures the hands’ gestures and movements using optical hand track-

ing sensors with high accuracy. Leap Motion controller can be mounted on the HTC 

VIVE head mounted display and connects communicate with the system via a USB 

cable. HTC VIVE also connects to the computation unit (Dell XPS 15 7590) via 

HDMI cables. HTC VIVE connects to Unity through VIVE port API package, while 

Leap Motion relies on its own package, UltraLeap plugin. Unity platform allows us to 

create a safe realistic physics-based manufacturing shop floor, where users can inter-

act with equipment. 

 

 

Fig. 3. a. The VR model, developed via Unity 3D game engine, b. The experimental setup for 

data collection. 

 

Our dataset of activities is established based on the literature of the topic and the 

available datasets (e.g., UCI, WISDM, GAMI) including activities such as standing 

idle (ST), walking (WA), bending (BE), and sitting (SI). Then, subjects are recruited 

and asked to stand in the middle of a designated zone, wear the immersive technolo-

gy, and perform the assigned activity in a natural way. The data are collected during 
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performing the tasks by the subjects at a frequency of 0.2 seconds. Next, the collected 

observations are imputed, normalized, and outliers are dropped. 

3.2 Unsupervised Classification 

The proposed unsupervised classification integrates k-means clustering and dynamic 

time warping. K-means algorithm is selected due to its scalability, guarantee of con-

vergence, and ease of generalization. To the best of our knowledge, this is the first 

time this proposed integration is used in intention recognition literature.  

 

K-means Algorithm 

K-means algorithm addresses the problem of clustering m elements (with n features) 

into k groups using the method of the lowest cost function (J), as shown in (1), which 

is usually the sum of each element's n-dimensional Euclidean distance to their closest 

group centroids. The constituents of the jth group are m(j). The n-dimensional feature 

values of each element inside a group determine the centroids. The K-means algo-

rithm recalculates the group centroids, updates the cost function, and assigns all other 

elements to the closest group. K-means repeatedly performs these tasks until achiev-

ing the lowest cost function [24]. 

 

𝐽(𝐶) =  ∑ ∑ ‖𝑥𝑖
(𝑗)

− 𝐶𝑗  ‖
2

𝑚(𝑗)

𝑖=1
𝑘
𝑗=1                                                            (1) 

 

where X = {x1, x2,…, xm} and C= {c1, c2, …, ck} are the set of elements and centroids. 

Typically, Euclidean distance is the foundation of classification (or clustering). How-

ever, such a simplistic measure is not applicable to the observations that vary in size. 

As Euclidean distance is susceptible to even the slightest deviations in the size of 

comparing entities (time axis in case of time series), DTW replaces Euclidean dis-

tance in this study. 

Dynamic Time Warping  

Introduced by Berndt and Clifford [25], DTW provides a one-to-many match rather 

than being restricted to one-to-one matches. Given two members with f and d lengths, 

ui (i = 1, 2, 3, …, f) and vj (j = 1, 2, 3, …, d), a matrix Si,j is calculated as follows [25]: 

 

Si,0 = S0,j = 0                                                                                               (2) 

S1,1 = (u1-v1)2                                                                                              (3) 

Si,j = min (Si-1,j, Si,j-1, Si-1,j-1) +( ui-vj)2                                                         (4) 

 

where the DTW distance is the minimum value of the sums of (ui –vj)2, calculated 

along several paths. The path that minimizes this sum is typically a warped 

curve. Dynamic time warping is a well stablished measure of difference between the 

sequences that vary in length. The observations collected in this study also have dif-

ferent lengths depending on the activities and how they are performed by the subjects. 
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 Here, we start by collecting historical data and labeling the historical time series 

with the gestures generating them. Then, for any incoming time series read by the 

sensors, DTW takes place to collect time series of similar shapes. Finally, cluster 

centroids will be computed (or recomputed) with respect to reported DTW. Here the 

cluster centroid averages a subset from a set of time series within the measured DTW 

space. As a result, instead of a point, each centroid is a time series taking the average 

shape of the time series assigned to the cluster. The proposed framework label new 

time series by minimizing the DTW distance measures among the time series within 

clusters and their corresponding centroids.  

4 Results and Discussion 

In this study, 5 participants performed the assigned activities multiple times and 

72216 data points were collected. During data pre-processing, 27966 data points were 

discarded. The remaining data points formed 125 observations, where each observa-

tion contains 16 features and variable number of time stamps (e.g., varying from 39 to 

354). The features include headset forward vector (x, y, z), headset position (x, y, z), 

headset rotation (x, y, z), headset velocity (x, y, z), headset angular velocity (x, y, z), 

and timestamp. The processed observations are divided into train and test sets accord-

ing to an 80/20 ratio. Four commonly used metrics, namely accuracy, precision, re-

call, and F-1 score, (5) to (8), are selected to evaluate the performance of our pro-

posed unsupervised classification algorithm. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 +𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑎𝑔𝑎𝑡𝑖𝑣𝑒 +𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑎𝑔𝑎𝑡𝑖𝑣𝑒
                (5) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                                                              (6) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                                                                   (7) 

𝐹 − 1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                                    (8) 

 

Although accuracy quantifies the ratio of correctly identified classes (intentions 

here), it cannot handle the imbalanced datasets. As a result, metrics such as precision, 

recall, and F-1 score are calculated to report the performance of our proposed model 

given our imbalanced dataset. While recall sheds light on the ratio of the relevant 

observations correctly classified by our trained models, precision represents the ratio 

of relevant observations. F-1 score, as the harmonic mean of recall and precision, 

combines these performance metrics into a single one. Relying on these metrics, we 

compared the performance of our proposed unsupervised classifier against the tradi-

tional k-means as displayed in Fig. 4.  
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Fig. 4. Accuracy, precision, recall, and F-1 score of our proposed unsupervised classifier and 

the traditional k-means model. 

 

As displayed in Fig. 4, our proposed model outperforms traditional k-means in accu-

racy, precision, recall, and F-1 score, by 39% (i.e., 85%-46%), 42% (i.e., 75%-33%), 

27% (i.e., 73%-46%), and 36% (i.e., 74%-38%) over the test set, respectively. Justify-

ing the performance gap between the proposed method and traditional k-means can be 

attributed to superiority of DTW on comparing time series and traditional k-means 

weakness in handling high dimensional data.  

The superiority of DTW on comparing time series is due its on one-to-many 

matching. While Euclidean distance is vulnerable to even the smallest of distortions in 

time, DTW optimizes the fit by stretching and/or compressing the time axis over dif-

ferent intervals [25-26]. The second cause contributing to the poor performance of the 

traditional k-means is its inability to take advantage of a high range of features. While 

our proposed approach relies on full information available on all 16 available features, 

the traditional k-means can only process one dimensional time series. For reporting 

the baseline model’s performance, we trained 16 different traditional k-means models 

(corresponding to the 16 available features) and reported the best performance (i.e., 

the model trained on the head rotation time series over the y axis) in Fig. 4. 

5 Conclusion 

As a fast-growing field, HRI has the potential of revolutionizing manufacturing and 

production systems through providing safe and efficient human robot teams. To 

achieve that, the first step is developing platforms that are capable of making robots 

context aware and enabling them to learn about humans’ intention. In this work, we 

propose an unsupervised classification framework for intention recognition based 

humans’ body gestures and motions.  The proposed framework is built upon integra-

tion of K-means and dynamic time warping algorithms. To train the proposed frame-

work, an immersive VR platform is developed for safe and realistic data collection. 

Our proposed framework outperformed the traditional k-means and achieved average 

accuracy, recall, precision, and F-1 score of 85%, 73%, and 75%, and 74%, respec-

tively. Our future research focus on developing more intuitive and seamless interac-
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tion methods that enhance the overall user experience and foster a sense of trust and 

reliability between the human and robot through addressing safety issues. 
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